cultural reviewer and dabbler in stylistic premonitions

  • 2 Posts
  • 29 Comments
Joined 3 years ago
cake
Cake day: January 17th, 2022

help-circle

  • Upload bandwidth doesn’t magically turn into download bandwidth

    Actually, it does. Various Cable and DSL standards involve splitting up a big (eg, measured in MHz) band of the spectrum into many small (eg, around 4 or 8 kHz wide) channels which are each used unidirectionally. By allocating more of these channels to one direction, it is possible to (literally) devote more band width - both the kinds measured in kilohertz and megabits - to one of the directions than is possible in a symmetric configuration.

    Of course, since the combined up and down maximum throughput configured to be allowed for most plans is nowhere near the limit of what is physically available, the cynical answer that it is actually just capitalism doing value-based pricing to maximize revenue is also a correct explanation.


  • If copyright holders want to take action, their complaints will go to the ISP subscriber.

    So, that would either be the entity operating the public wifi, or yourself (if your mobile data plan is associated with your name).

    If you’re in a country where downloading copyrighted material can have legal consequences (eg, the USA and many EU countries), in my opinion doing it on public wifi can be rather anti-social: if it’s a small business offering you free wifi, you risk causing them actual harm, and if it is a big business with open wifi you could be contributing to them deciding to stop having open wifi in the future.

    So, use a VPN, or use wifi provided by a large entity you don’t mind causing potential legal hassles for.

    Note that if your name is somehow associated with your use of a wifi network, that can come back to haunt you: for example, at big hotels it is common that each customer gets a unique password; in cases like that your copyright-infringing network activity could potentially be linked to you even months or years later.

    Note also that for more serious privacy threat models than copyright enforcement, your other network activities on even a completely open network can also be linked to identify you, but for the copyright case you probably don’t need to worry about that (currently).


  • Mattermost isn’t e2ee, but if the server is run by someone competent and they’re allowed to see everything anyway (eg it’s all group chat, and they’re in all the groups) then e2ee isn’t as important as it would be otherwise as it is only protecting against the server being compromised (a scenario which, if you’re using web-based solutions which do have e2ee, also leads to circumvention of it).

    If you’re OK with not having e2ee, I would recommend Zulip over Mattermost. Mattermost is nice too though.

    edit: oops, i see you also want DMs… Mattermost and Zulip both have them, but without e2ee. 😢

    I could write a book about problems with Matrix, but if you want something relatively easy and full featured with (optional, and non-forward-secret) e2ee then it is probably your best bet today.









  • That’s complicated to do correctly. Normally, for the server to verify the user has the correct password, it needs to know or receive the password, at which point it could decrypt all the user’s files. They’d need to implement something like SRP.

    What I proposed is that the server does not know the password (of course), but that it knows a thing derived from it (lets call it the loginSecret) which the client can send to obtain the encryptedMasterKey. This can be derived in a similar fashion to the keyEncryptionKey (eg, they could be different outputs of an HKDF). The downside to the server knowing something derived from the passphrase is that it enables the server to do an offline brute force of it, but in any system like this where the server is storing something encrypted using [something derived from] the passphrase the server already has that ability.

    Is there any downside to what I suggested, vs the current design?

    And is there some reason I’m missing which would justify adding the complexity of SRP, vs what I proposed above?

    The only reason I can think of would be to protect against a scenario where an attacker has somehow obtained the user’s loginSecret from the server but has not obtained their encryptedMasterKey: in that case they could use it to request the encryptedMasterKey, and then could make offline guesses at the passphrase using that. But, they could also just use the loginSecret for their offline brute-force. And, using SRP, the server still must also store something the user has derived from the password (which is equivalent to the loginSecret in my simpler scheme) and obtaining that thing still gives the adversary an offline brute-force opportunity. So, I don’t think SRP provides any benefit here.


  • edit: the two issues i raised in this comment had both already been addressed.

    this was the developer’s reply on matrix:

    1. We do have a CLA: https://cla-assistant.io/ente-io/ente
    2. We will update the iOS app to offer you an option to point to your self hosted instance (so that you can save yourself the trouble of building it): https://github.com/ente-io/ente/discussions/504
    3. The portion of the document that deals with authentication has been outdated, my bad. We’ve adopted SRP to fix the concerns that were pointed out: https://ente.io/blog/ente-adopts-secure-remote-passwords/
    here is my original comment

    AGPL-3.0

    Nice

    This would be nice, but, this repo includes an iOS app, and AGPL3 binaries cannot be distributed via Apple’s App Store!

    AGPL3 (without a special exception for Apple, like NextCloud’s iOS app has) is incompatible with iOS due to the four paragraphs of the license which mention “Installation Information” (known as the anti-tivoization clause).

    Only the copyright holder(s) are able to grant Apple permission to distribute binaries of AGPL3-licensed software to iOS users under non-AGPL3 terms.

    Every seemingly-(A)GPL3 app on Apple’s App Store has either copyright assignment so that a single entity has the sole right to distribute binaries in the App Store (eg, Signal messenger) or uses a modified license to carve out an Apple-specific exception to the anti-tivoization clause (eg, NextCloud). In my opinion, the first approach is faux free software, because anyone forking the software is not allowed to distribute it via the channel where the vast majority of users get their apps. (In either case, users aren’t allowed to run their own modified versions themselves without agreeing to additional terms from Apple, which is part of what the anti-tivoization clause is meant to prevent.)

    Only really nice when not CLA is required and every contributor retains their copyright. Ente doesn’t seem to require a CLA.

    I definitely agree here! But if it’s true that they’re accepting contributions without a CLA, and they haven’t added any iOS exception to their AGPL3 license, then they themselves would not be allowed to ship their own iOS app with 3rd party contributions to it! 😱 edit: it’s possible this is the case and Apple just hasn’t noticed yet, but that is not a sustainable situation if so.

    If anyone reading this uses this software, especially on iOS, I highly recommend that you send the developers a link to this comment and encourage them to (after getting the consent of all copyright holders) add something akin to NextCloud’s COPYING.iOS to their repository ASAP.

    cc @ioslife@lemmy.ml @baduhai@sopuli.xyz @skariko@feddit.it

    (i’m not a lawyer, this is not legal advice, lol)

    edit: in case a dev actually sees this… skimming your architecture document it looks like when a user’s email is compromised (“after you successfully verify your email”), the attacker is given the encryptedMasterKey (encrypted with keyEncryptionKey, which is derived from a passphrase) which lets them perform an offline brute-force attack on the passphrase. Wouldn’t it make more sense to require the user to demonstrate knowledge of their passphrase to the server prior to giving them the encryptedMasterKey? For instance, when deriving keyEncryptionKey, you could also derive another value which is stored on the server and which the client must present prior to receiving their encryptedMasterKey. The server has the opportunity to do offline attacks on the passphrase either way, so it seems like there wouldn’t be a downside to this change. tldr: you shouldn’t let adversaries who have compromised a user’s email account have the ability to attack the passphrase offline.

    (i’m not a cryptographer, but this is cryptography advice)