Just an explorer in the threadiverse.

  • 1 Post
  • 12 Comments
Joined 1 year ago
cake
Cake day: June 4th, 2023

help-circle


  • PriorProject@lemmy.worldtoSelfhosted@lemmy.worldWoL through Wireguard
    link
    fedilink
    English
    arrow-up
    1
    arrow-down
    1
    ·
    edit-2
    10 months ago

    This is a very strong explanation of what’s going on. And as a follow-up, I believe that ZeroTier present a single Ethernet broadcast domain, and so WoL tricks are more likely to work naturally there than with Wireguard. I haven’t used ZeroTier, and I do use Wireguard via Tailscale/Headscale. I’ve never missed the Ethernet features of ZeroTier and they CAN result in a very chatty wan if you’re not careful. But I think ZT would make this straightforward.

    Though as other people note… the simplest/least-disruptive change is probably to expose some scripty thing on the rpi that can be triggered via be triggered over a routed protocol and then have the rpi emit the Ethernet broadcast packets from the physical network.


  • No no, sorry. I mean can I still have all my network traffic go through some VPN service (mine or a providers) while Tailscale is activated?

    Tailscale just partnered with Mullvad so this works out of the box for that setup: https://tailscale.com/blog/mullvad-integration/

    For others, it’s a “yes on paper” situation. It will probably often not work out of the box, but it seems likely to be possible as an advanced configuration. At the end of the line of possibilities, it would definitely be possible to set up a couple of docker containers as one-armed routers, one with your VPN and one with Tailscale as an exit node. Then they can each have their own networking stack and you can set up your own routes and DNS delegating only the necessary bits to each one. That’s a pretty advanced setup and you may not have the knowhow for it, but it demonstrates what’s possible.


  • To a first approximation, Tailscale/Headscale don’t route and traffic.

    Ah, well damn. Is there a way to achieve this while using Tailscale as well, or is that even recommended?

    Is there a way to achieve what? Force tailscale to route all traffic through the DERP servers? I don’t know, and I don’t know why you’d want to. When my laptop is at home on the same network as my file-server, I certainly don’t want tailscale sending filserver traffic out to my Headscale server on the Internet just to download it back to my laptop on the same network it came from. I want NAT traversal to allow my laptop and file-server to negotiate the most efficient network path that works for them… whether that’s within my home lab when I’m there, across the internet when I’m traveling, or routing through the DERP server when no other option works.

    OpenVPN or vanilla Wireguard are commonly setup with simple hub-and-spoke routing topologies that send all VPN traffic through “the VPN server”, but this is generally slower path than a direct connection. It might be imperceptibly slower over the Internet, but it will be MUCH slower than the local network unless you do some split-dns shenanigans to special-case the local-network scenario. With Tailscale, it all more or less works the same wherever you are which is a big benefit. Of course excepting if you have a true multigigabit network at home and the encryption overhead slows you down… Wireguard is pretty fast though and not a problematic throughout limiter for the vast majority of cases.


  • Have a read through https://tailscale.com/blog/how-nat-traversal-works/

    You, and many commenters are pretty confused about out tailscale/Headscale work.

    1. To a first approximation, Tailscale/Headscale don’t route and traffic. They perform NAT traversal and data flows directly between nodes on the tailnet, without traversing Headscale/Tailscale directly.
    2. If NAT traversal fails badly enough, it’s POSSIBLE that bulk traffic can flow through the headscale/tailscale DERP nodes… but that’s an unusual scenario.
    3. You probably can’t run Headscale from your home network and have it perform the NAT traversal functions correctly. Of course, I can’t know that for sure because I don’t know anything about your ISP… but home ISPs preventing Headscale from doing it’s NAT traversal job are the norm… one would be pleasantly surprised to find that a home network can do that properly.
    4. Are younreally expecting 10gb/s speeds over your encrypted links? I don’t want to say it’s impossible, people do it… but you’d generally only expect to see this on fairly burly servers that are properly configured. Tailscale just in April bragged about hitting 10gb speeds with recent optimizations: https://tailscale.com/blog/more-throughput/ and on home hardware with novice configd I’d generally expect to see roughly more like single gigabit.

  • I don’t know what’s up on your case, but I would not jump to the conclusion that it’s impossible to use tailscale with any other VPN in any circumstance.

    Rather, tailscale and Mullvad will now work easily and out of the box. For other VPNs, you may need to do understand the topology and routing of virtual devices and have the technical ability and system permissions to make deep networking changes.

    So I’d expect one can probably find a way for most things to coexist on a Linux server. On a non-rootrr android phone? I’m less confident.


  • So I have a question, what can I do to prevent that from happening? Apart from hosting everything on my own hardware of course, for now I prefer to use VPS for different reasons.

    Others have mentioned that client-caching can act as a read-only stopgap while you restore Vaultwarden.

    But otherwise the solution is backup/restore. If you run Vaultwarden in docker or podman container using volumes to hold state… then you know that as long as you can restart Vaultwarden without losing data that you also know exactly what data needs to be backed up and what needs to be done to restore it. Set up a nightly cron job somewhere (your laptop is fine enough if you don’t have somewhere better) to shut down Vaultwarden, rsync it’s volume dirs, and start it up again. If you VPS explodes, copy these directories to a new VPS at the same DNS name and restart Vaultwarden using the same podman or docker-compose setup.

    All that said, keeypass+filesync is a great solution as well. The reason I moved to Vaultwarden was so I could share passwords with others in a controlled way. For single-user, I prefer how keypass folders work and keepass generally has better organization features… I’d still be using it for only myself.


  • You connect to Headscale using the tailscale clients, and configuration is exactly the same irrespective of which control server you use… with the exception of having to configure the custom server url with Headscale (which requires navigating some hoops and poor docs for mobile/windows clients).

    But to my knowledge there are no client-side configs related to NAT traversal (which is kind of the goal… to work seamlessly everywhere). The configs themselves on the headscale server aren’t so bad either, but the networking concepts involved are extremely advanced, so debugging if anything goes sideways or validating that your server-side NAT traversal setup is working as expected can be a deep dive. With Tailscale, you know any problems are client-side and can focus your attention accordingly… which simplifies initial debugging quite a lot.



  • I use Headscale, but Tailscale is a great service and what I generally recommend to strangers who want to approximate my setup. The tradeoffs are pretty straightforward:

    • Tailscale is going to have better uptime than any single-machine Headscale setup, though not better uptime than the single-machine services I use it to access… so not a big deal to me either way.
    • Tailscale doesn’t require you to wrestle with certs or the networking setup required to do NAT traversal. And they do it well, you don’t have to wonder whether you’ve screwed something up that’s degrading NAT traversal only in certain conditions. It just works. That said, I’ve been through the wringer already on these topics so Headscale is not painful for me.
    • Headscale is self-hosted, for better and worse.
    • In the default config (and in any reasonable user-friendly, non professional config), Tailscale can inject a node into your network. They don’t and won’t. They can’t sniff your traffic without adding a node to your tailnet. But they do have the technical capability to join a node to your tailnet without your consent… their policy to not do that protects you… but their technology doesn’t. IMO, the tailscale security architecture is strong. I’d have no qualms about trusting them with my network.
    • Beyond 3 devices, Tailscale costs money… about $6 US in that geography for over 100 devices. It’s a pretty reasonable cost for the service, and proportional in the grand scheme of what most self-hosters spend on their setups annually. IMO, it’s good value and I wouldn’t feel bad paying it.

    Tailscale is great, and there’s no compelling reason that should prevent most self-hosters that want it from using it. I use Headscale because I can and I’m comfortable doing so… But they’re both awesome options.


  • I use k8s at work and have built a k8s cluster in my homelab… but I did not like it. I tore it down, and currently using podman, and don’t think I would go back to k8s (though I would definitely use docker as an alternative to podman and would probably even recommend it over podman for beginners even though I’ve settled on podman for myself).

    1. K8s itself is quite resource-consuming, especially on ram. My homelab is built on old/junk hardware from retired workstations. I don’t want the kubelet itself sucking up half my ram. Things like k3s help with this considerably, but that’s not quite precisely k8s either. If I’m going to start trimming off the parts of k8s I don’t need, I end up going all the way to single-node podman/docker… not the halfway point that is k3s.
    2. If you don’t use hostNetworking, the k8s model of traffic routes only with the cluster except for egress is all pure overhead. It’s totally necessary with you have a thousand engineers slinging services around your cluster, but there’s no benefit to this level fo rigor in service management in a homelab. Here again, the networking in podman/docker is more straightforward and maps better to the stuff I want to do in my homelab.
    3. Podman accepts a subset of k8s resource-yaml as a docker-compose-like config interface. This lets me use my familiarity with k8s configs iny podman setup.

    Overall, the simplicity and lightweight resource consumption of podman/docker are are what I value at home. The extra layers of abstraction and constraints k8s employs are valuable at work, where we have a lot of machines and alot of people that must coordinate effectively… but I don’t have those problems at home and the overhead (compute overhead, conceptual overhead, and config-overhesd) of k8s’ solutions to them is annoying there.